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Abstract – We consider the resolution of an inverse problem for the identification of some reduced nonlinear 
diffusive models. The modal identification method is dealt with along with a gradient-type optimization method. 
Two distinct approaches are considered and compared. On one hand the classical finite differences approach and, 
on the other hand, the adjoint method for the computation of the objective function gradient. It is shown a drastic 
CPU time reduction when using the adjoint method, still with a high identification accuracy. 
 
1. INTRODUCTION 
Multidimensional nonlinear inverse heat conduction problems (IHCP) usually involve the use of a high order 
detailed model related to the space-time discretization. Due to the large number of degrees of freedom of the 
systems, the optimization algorithms used to solve the IHCP may be tremendously time-consuming. This 
drawback leads to identify some models which have a much lower number of degrees of freedom. Starting from 
the Detailed Model (DM) of the system, the modal identification method (MIM) is applied to build the 
corresponding Reduced Model (RM). The use of such RM allows important reduction of computation time, 
when solving both direct and inverse problems. However, the question of the computing time needed to obtain 
the RM arises. 

So far, the identification of reduced models through the modal identification method was based on gradient 
algorithms coupled with the well-known forward finite differences method. The objective function to be 
minimized is the mean-squared discrepancy between the outputs of the reduced model and of the detailed model. 
When the direct detailed model is nonlinear, the number of iterations needed to identify the reduced models may 
be large leading to a high time-consumption. Moreover, the finite difference method only gives approximations 
of the functional gradient thus yielding to more computation time. In order to save up some time computation 
when building the RM, we have coupled the optimization algorithm with the adjoint method. The corresponding 
lagrangian penalizes the reduced space and time dependent state representation as well as the output system. The 
adjoint problem involves two more linear systems. The gradient of the functional resides in the end in a single 
matrix-vector product. 

The numerical tests presented in the paper prove the ability of the adjoint methods to identify reduced models 
and show the drastic reduction of time computation needed to identify the reduced models. 

 
2. THE DIFFUSION MODEL 
Let us consider that the continuous physical phenomenon of concern is a priori governed by the parabolic 
unsteady diffusive evolution (1) in ( ) Itx ×Ω∈,  where 3ℜ⊂Ω∈x  and ( )ftIt ,0=∈ : 
 

( ) :, thatsuchtxFind ϕϕ =  

( ) f=∇∇− ϕβϕα .�  for ( ) ,, Itx ×Ω∈  
g=ϕ  for ,,1 Itx ∈Ω∂∈  

hn =∇ .ϕ  for ,,2 Itx ∈Ω∂∈  

0ϕϕ =  for ,0, =Ω∈ tx  

(1) 

 
where α  is the inertial coefficient, β  is the diffusion coefficient, ∇  is the vector differential operator, n  is 
the outward unit normal vector, t∂∂= ϕϕ�  where t  is the marching variable, and where 21 Ω∂∪Ω∂  is a 
partition of the boundary of Ω . Mixed Dirichlet-Neumann conditions are applied on the boundary. 

After discretization of the continuous partial differential equation along with initial and boundary conditions, 
separating apart linear and nonlinear terms, and exhibiting the explicitly-expressed thermal inputs, the 
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continuous problem eqn.(1) is transformed [4,5] to the discrete one eqn.(2). In eqn.(2), Φ  is the discrete state of 
order N , Y  is the selected output vector of order Nq ≤ , U  is the explicitly-expressed input vector, B  is the 
related input matrix, C  is the matrix used to select the outputs and A  is a square matrix of order N . 
Eventually, Ψ  is the vector that exhibits all the nonlinear contributions [4]. 

 

( ) ( ) :, thatsuchtYYtFind qN ℜ∈=ℜ∈Φ=Φ  

Ψ++Φ=Φ BUA�  for ,It ∈  

0Φ=Φ  for ,0=t  

Φ= CY  for ,It ∈  

(2) 

 
Let F  be the diagonal matrix of A  obtained with the use of the eigenvectors matrix M , i.e. 

AMMF 1−= . This change of variables MX=Φ  yields to solve eqn.(3) instead of eqn.(2): 
 

( ) ( ) :, thatsuchtYYtXXFind qN ℜ∈=ℜ∈=  

ZGUFXX Ω++=�  For ,It ∈  

0XX =  For ,0=t  

HXY =  For ,It ∈  

(3) 

 
where Z  is the vector that contains the nonlinear combinations of states iX . In the specific case presented 
downwards, the dimension of Z  is ( ) 21+NN , hence the dimension of the matrix Ω  is ( )( )21, +NNN . 
This detailed model, expressed on its modal base is also of order N . When defining a reduced model of order 

Nn ≤  with the same structure as in eqn.(3), the direct problem reduces to: 
 

( ) ( ) :, thatsuchtYYtXXFind qn ℜ∈=ℜ∈=  

ZGUFXX Ω++=�  For ,It ∈  

0XX =  For ,0=t  

HXY =ˆ  For ,It ∈  

(4) 

 
where the vector that contains the nonlinear combinations of states writes from now on: 

 

( ).,,,...,,...,,,,...,,, 2
1

2
1232

2
213121

2
1 nnnnnn

t
XXXXXXXXXXXXXXXXZ −−=  (5) 

 
3. IDENTIFICATION OF THE REDUCED MODEL 
All the components of the matrices involved in eqn.(4) are to be identified. The identification is performed 
through the resolution of an inverse problem. Normally, the searched vector parameter is defined as ( ) ( )( )qnnpn

ilkijiii
t HGFu ++++ℜ∈Ω= 211

,,,, ,,,  with ni ,...,1= , pj ,...,1= , ( ) 21,...,1 += nnk  and 
ql ,...,1= . However, taking into account that the matrix Ŷ  is linear with respect to the matrix H  when X  is 

given, then H  can be obtained using linear least squares at each time  F , G  and Ω  are updated. Hence, the 
searched vector reduces to ( ) ( )( )211

,,, ,, +++ℜ∈Ω= nnpn
kijiii

t GFu . 
The objective function to be minimized is classically the time-integrated mean-squared discrepancy between 

the response Y  (given by the detailed model), and the response Ŷ  given from the reduced model. Since this 
latter response depends on time and also on the searched parameters, it is denoted ( )utY ;ˆ  [6]. The optimization 
problem to be solved writes: 

 

( )
( )
( )

( ),minsuch that   Find
0,,ˆ

,0,
2

1
ujuju

uXYR
uXR

=
=

=  
(6) 

 
with the objective function defined by: 
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( ) ( ) ( )( ) .;ˆ
2
1

1

2

��
=

−=
I

q

k
kk dttYutYuj  (7) 

 
and where 1R  and 2R  represent the equations of evolution of the state variables and outputs related to the 
Reduced Model: 

 

( ) ,0,1 =Ω−−−= ZGUFXXuXR �  

( ) .0ˆ,,ˆ2 =−= HXYuXYR  
(8) 

 
The adjoint method has been chosen to solve this inverse problem. The main reasons of this choice are: the 

adjoint (lagrangian) method is very interesting when there is no explicit dependency between the state variables 
involved in the objective function and the parameters; moreover, the adjoint method is interesting when the 
number of parameters is high. Hence, let us define the lagrangian of the problem as: 

 

( ) ( ) ( )( ) ( )( ) ,,,,ˆ,,,,,ˆ, 21
IBIA uXYRuXRujuYXL ×× ++= νλνλ  (9) 

 
where λ  and ν  are the adjoint variables, and where the scalar products are defined as: 

 

( ) ,,
1

dtbaba
I

n

i
iiIA ��

=
× =  ( ) .,

1

dtbaba
I

q

i
iiIB ��

=
× =  (10) 

 
It may be showed that the adjoint problem related to the lagrangian eqn.(9) and to the optimization eqn.(8) is: 
 

( ) ( ) :, thatsuchttFind qn ℜ∈=ℜ∈= ννλλ  

0
~ =−Ω−−− νλλλ HZF tttt�  for ,It ∈  

0=− νλ Ht  for ,ftt =  

Yj ˆ∂∂−=ν  for ,It ∈  

Yj ˆ∂∂−=ν  for .ftt =  

(11) 

 
This set of adjoint equations couples one full time-dependent problem (problem in λ ) with one stationary-

like time dependent problem (problem in ν ). Both problems being weekly coupled (see the definitions of the 
different coupling types in [1]), it is possible to solve both problems in one go as: 

 

( ) :thatsuchtFind nℜ∈= λλ  

( ) 0ˆ~ =∂∂+Ω+−− YjHZF tttt λλ�  for ,It ∈  

0ˆ =∂∂+ YjHtλ  for .ftt =  

(12) 

 
This adjoint problem must be solved backwards in t  to be well-posed [2]. With the new variable defined by 

tt f −=τ , the adjoint problem eqn.(12) is solved forwardly. The adjoint problem eqn.(12) being solved, the 
objective function gradient is equal to the lagrangian gradient. With the vector of parameters defined upwards, 
the objective function gradient writes: 

 

( ) ( ) ( )( ,,,,
,...,1;,...,1,...,1 pjniijniii

t UXuj
====∇ λλ ( ) ( ) ).,

21,...,1;,...,1 +== nnjniijZ λ  (13) 

 
The global optimization algorithm works increasing the order n  of the reduced model eqn.(4). It first starts 

with order 1=n  to identify the components ( ) )2(
1,1,11,1 ,, p

j
t GFu +ℜ∈Ω=  with pj ,...,1= . When these 

components are evaluated, the algorithm identifies the components of the reduced model of order 2=n : ( ) )31(2
,,, ,, ++ℜ∈Ω= p
kijiii

t GFu  with 2,...,1=i , pj ,...,1=  and 3,...,1=k . The order is then increased 
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until the below-defined global criterion (stopping rule #2) is satisfied. For each order n  related to the reduced 
model, the optimization algorithm proceeds this way. Given an initial set of controls 0u , one builds a series 
defined by pppp duu α+= −1  where pd  is the direction of descent and pα  is the descent step size. The 
direction of descent is given by the Broyden-Fletcher-Goldfarb-Shanno method [7]. It requires only the gradient 
of the objective function. Next, the optimal step size which requires both the objective function value and its 
gradient is given through a cubic polynomial interpolation [3]. The global procedure for the identification of the 
reduced model is given here-below: 

 
Let order 1=n   

 (a) Let 0=p , 0u  be the starting point. Choose any positive definite matrix 0H  (identity for 
instance) 

 (b) At step p , compute the displacement direction ( )ppp ujHd ∇−= , and find 1+pu  at the 

minimum of ( )pp duj α+  with 0≥α . 

 (c) Set ppp uu −= +1δ  and compute ( ) ( )ppp ujuj ∇−∇= +1γ  to actualize: 

 pppt

pptpp

ppt

ptp
pp

H
HH

HH
γγ

γγ
γδ
δδ −+=+

.
.1  

 (d) Stopping rules #2 (see below). If not satisfied, set 1+← pp  and return to (b) 

Stopping rule #1 (see below). If satisfied: end. Else set 1+← nn  and return to (a) 
 
The stopping rule #1 is used to stop the incrementation of the order n  of the reduced model, that is when a 

global stabilization of the objective function is reached. The stopping rule #2 is used to stop the identification 
algorithm for a given order n . These stopping criteria are listed in [4,5]. 

Let us point out that the quality related to the RM is bounded to the quality of the DM used for data 
computation. Thus, a coarse DM yields to a coarse RM, and an accurate DM yields to an accurate RM. 
Moreover, in contrast to linear systems for which a RM identified from responses to any known input signal will 
be a priori valid for any other input signal, nonlinear systems basically react in a different way according to the 
excitation level. Actually, a RM identified from data given from a given input signal 1U  will not necessary 
adequately reproduce the system’s behaviour when a different input signal 2U  is applied. The signal used to 
generate data for the RM identification must allow the system to react in large ranges of states levels and 
frequencies. 

 
4. THE NUMERICAL RESULTS 
This section presents the numerical results and especially the validation of the proposed approach. The test case 
deals with a 3 dimensional case with the nonlinearity given by the diffusion coefficient dependent on the state as 

( ) ( )( )2001.0116 −+= XXβ . The inertial coefficient α  equals 610029.4=  SI. Boundary conditions 
are given by eqn.(14), where h  equals 50 SI.  

 
UXx =∂−

1
β  for ,,01 Itx ∈=  

hXXx =∂−
1

β  for ,,1.01 Itx ∈=  

0=X  for ,,02 Itx ∈=  

0
2

=∂ Xxβ  for ,,1.02 Itx ∈=  

hXTx =∂−
3

β  for ,,03 Itx ∈=  

0
3

=∂ Xxβ  for ,,1.03 Itx ∈=  

(14) 

 
The initial condition is given by the resolution of the steady state regime when boundary conditions given by 

eqn.(14) are applied with a given constant loading U . The domain is discretized using the Finite Volumes 
Method [8], with 11 nodes in each direction, leading to a DM given by eqn.(2) of order N = 1331.  

To illustrate the method, we consider three points respectively located at ( ) 210.2;5;1 − , ( ) 210.5;5;5 −  and 
( ) 210.8;5;9 − . 
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The signal 1U  used for the reduced model identification is presented in Figure 1. The number of steps nt  
equals 10800. Each step lasts 5 seconds of time. In total, one thus gets 32403 points of state evolution for the 
three considered spatial points. Figure 2 shows the response obtained with the DM of order N  = 1331. 

 

Figure 1: Flux density ( )tU1  used for RM 
identification (both 1U  and t  are in SI ). 

Figure 2: DM’s state responses (in SI) at the three 
points when the input signal shown in Figure 1 for the 
RM identification is applied. These states along with 
the corresponding signal are used as data for the RM 
identification. 

 
The numerical results of the identification of RMs of orders n  = 1 to 5 are summarized in Table 1. For each 

distinct order n , the minimization of the quadratic criterion is performed. The identification has been performed 
using two different approaches to compute the gradient of )(uj : the classical Finite Differences Method and the 
Adjoint Method as developed in this paper. At first, some similar observations can be made for both methods. 
For the three first orders from n =1 to n =3, the mean quadratic error id

Yσ  (see [4]) characterizing the RM 
identification quality rapidly decreases from 1.4 SI to 0.02 SI. For n =4, the gain in precision is still substantial 
with =id

Yσ  0.01 SI. Increasing the order to n =5 leaves id
Yσ  quasi-unchanged: the identification criterion is 

slightly better but the improvement is not significant. 
 

Table 1: RM identification results. Comparison between Finite Differences and Adjoint Method for the 
computation of )(uj∇ . 

)(uj∇ computed by Finite Differences )(uj∇ computed by Adjoint Method 
Reduced 
Model 
order n 

id
Yσ  

Number 
of 

iterations 

Computing 
Time (s 
CPU) 

Average 
time per 
iteration 
(s CPU) 

id
Yσ   

Number 
of 

iterations 

Computing 
Time (s 
CPU) 

Average 
time per 
iteration 
(s CPU) 

1 1.396 12 7 0.6 1.396 10 34 3.4 
2 0.187 73 134 1.8 0.187 76 368 4.8 
3 1.92 10-2 343 1646 4.8 1.96 10-2 207 967 4.7 
4 9.29 10-3 277 9263 33.4 1.02 10-2 111 849 7.6 
5 8.98 10-3 4 364 91 1.01 10-2 1 17 17 

 
Table 1 also allows a comparison of computing time for the RM identification when using the Finite 

Difference Method on one hand, and the Adjoint Method on the other hand for the computation of the objective 
function gradient. In terms of average time per iteration, it can be observed that for orders n =1 and n =2, the 
Finite Differences Method is faster. For n =3, both methods are almost as efficient, and for n =4, the Adjoint 
Method becomes much faster. Even though the Adjoint Method is, in this specific case, more efficient than the 
Finite Difference Method only for orders greater than 2, cumulating for each method the total times needed to 
identify the reduced model gives the advantage to the Adjoint Method. For instance the total CPU times to 
access the third order RMs are equal to 1369 and 1787 second CPU for respectively the Adjoint Method and the 
Finite Difference Method. To access the fourth order RM, the total CPU times are respectively equal to 2218 and 
11050 second CPU.  

In order to validate the identified RM, it is necessary to test it with an input signal 2U  very different from 
the signal used for the model identification. Figure 3 shows the signal 2U  including steps, ramps and a sinusoid. 
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Figure 4 shows the state responses computed with the DM. For both approaches, the RM reproduces very 
efficiently the DM’s behaviour. Since it is not possible to distinguish the quasi-perfectly superposed curves, we 
rather propose to show the discrepancies between both models on separated graphs. The discrepancies are shown 
in both Figure 5 and Figure 6. 

Figure 5 shows the residuals between DM’s responses and those computed with the order 4 RM obtained 
using the Finites Differences Method. Figure 6 shows the residuals between DM’s responses and those computed 
with the order 4 RM obtained using the Adjoint Method. Discrepancies are of the same order of magnitude for 
both approaches. The RM built using the Finite Difference Method seems slightly better for the point n°1 while 
the RM built using the Adjoint Method is better for the point n°2. Though the quality of the RM is almost 
identical for both approaches, the main difference between both approaches comes from the high time reduction 
when using the Adjoint Method. 

Next, it is pointed out that the use of the RM instead of the DM yields to a drastic reduction of computation 
time. The direct problem resolution requires only 0.15 s CPU with a RM of order 4, instead of 163 s CPU with 
the original DM of order 1331. This reduction factor is greater than 1000. 

Eventually, one should note the quite high level of nonlinearities in the proposed example: if the linear RM 
obtained by zeroing the nonlinear term ( )( )tXZΩ  involved in (4) is used, resulting state evolutions are far 
from those shown on Figure 4, with discrepancies up to 80 SI. 

 

Figure 3: Test heat flux density 2U  used for RM 
validation. 
 

Figure 4: DM’s temperature responses at points N°1, 2 
and 3 when the test input signal 2U  is applied. 
 

Figure 5 : Discrepancies between DM’s and RM’s 
(FDM) responses when test function is applied. 

Figure 6 : Discrepancies between DM’s and RM’s 
(AM) responses when test function is applied. 

 
5. CONCLUSIONS 
The combination of the Modal Identification Method for identifying some Reduced Models and the Adjoint 
Method for computing gradients has been developed in this paper. The adjoint problem has been derived from 
the structure of the direct model.  

Both approaches (finite differences method and the adjoint method) have led to similar results in terms of 
Model Reduction quality. However, the high reduction of CPU when identifying the RM with the Adjoint 
Method comes from at least two reasons. At first, the adjoint problem is linear even though the direct model is 
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not. Next, because the adjoint problem must be solved only once (whatever the number of parameters to be 
identified). 

The accuracy of identified Reduced Models has also been shown, with drastic reduction of computation time 
when using the Reduced Models instead of the original Detailed Model. 

Further developments include the extension of the proposed approach to the case where both the inertial and 
the diffusive coefficients are state dependent. Next studies shall concern the model reduction for fluid mechanics 
problems where a large number of parameters are to be identified. 
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